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The onset of convection in a rotating cylindrical annulus with sloping conical bounda-
ries is studied in the case where this slope increases with the radius. The critical modes
assume the form of drifting spiralling columns attached to the inner cylindrical wall at
moderate and large Prandtl numbers, but they become attached to the outer wall
at low Prandtl numbers. These latter ‘equatorially attached’ modes are multicellular
at intermediate rotation rates. Through a perturbation analysis which is validated
by a numerical code, we show that all equatorially attached modes are quasi-inertial
modes and analyse the physical mechanisms leading to multicells. This is done for
both stress-free and no-slip boundary conditions. At finite amplitudes the convection
generates a Reynolds stress which leads to the development of a mean zonal flow,
and a geometrical analysis of the mechanisms leading to this zonal flow is presented.
The influence of Ekman friction on the zonal flow is also studied.

1. Introduction
The problem of the convection driven by centrifugal buoyancy in rotating cylindrical

annuli has received considerable attention in recent years (see, e.g. Abdulrahman et al.
2000; Pino et al. 2000, 2001; Plaut & Busse 2002; Westerburg & Busse 2003; Aubert,
Gillet & Cardin 2003; Morin & Dormy 2004) because it serves as a model for the
more complex dynamics of convection in rotating spherical fluid shells. This latter
problem is one of the fundamental problems in geophysics and astrophysics in that
it provides the basis for the understanding of the energy transport from the interior
of celestial bodies and of the generation of magnetic fields by the associated fluid
flows. While the problem of convection in rotating spheres depends on three spatial
coordinates as well as on time, the dependence on the third coordinate in the direction
of the axis of rotation can be eliminated in the analysis of the corresponding rotating
cylindrical annulus problem. For introductions to this ‘quasigeostrophic’ approach we
refer to the original publication Busse (1970) as well as Busse & Or (1986).

In the case of convection in a rotating spherical fluid shell Zhang & Busse (1987)
and Zhang (1992) have shown that there actually exist two different types of critical
mode. Thermal Rossby waves in the form of drifting spiralling columns describe the
onset of convection for moderate and large values of the Prandtl number P . The
extent of spiralling increases with decreasing P , while at high values of P the columns
are more confined and the spiralling is less noticeable; the complete asymptotic theory
for these spiralling modes has been obtained only recently by Dormy et al. (2004). At
low values of the Prandtl number P , convection cells attached to the outer equator
of the shell are preferred. These ‘equatorially attached modes’ can be interpreted
as modified inertial waves and, indeed, Zhang (1993, 1994) was able to determine
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Figure 1. (a) Geometry of the rotating cylindrical annulus. The fluid is contained in a cylindri-
cal channel spinning around its z-axis. A radial temperature difference Tout − Tin is imposed at
the vertical sidewalls. The conical caps are curved. After integration over the axial coordinate
z, we are led to a two-dimensional problem in the equatorial (grey) plane. (b) Streamlines of a
spiralling neutral mode computed with the Galerkin code for stress-free boundary conditions,
ε = 2, P = 1, η = 42 000. The annular geometry has been reconstructed from the Cartesian
solution ψ(x, y, t) by applying the transformation (x, y) �→ (rm + x)(cos(y/rm), sin(y/rm)) with
the dimensionless mid-radius rm = 1.04 (see § 3).

their properties through a perturbation analysis based on inertial oscillations as
solutions of lowest order. For an extension of this approach, see Busse & Simitev
(2004).

A salient feature of the critical equatorially attached modes, discovered by Yano
(1992) in the framework of a quasi-geostrophic model, and confirmed by the numerical
study of Ardes, Busse & Wicht (1997) for three-dimensional spherical shell convection,
is that they are multicellular at large rotation rates. Similar multicellular modes have
also been found by Pino et al. (2000) in the analysis of the onset of convection
in a rotating annulus with a finite gap between the cylindrical boundaries. Yano
(1992) suggested that all convection modes of a cylindrical annulus attached to the
outer wall, including the multicellular ones, are modified inertial waves. However,
his treatment is not entirely satisfactory because only quite large rotation rates were
considered, in terms of the Ekman number E, E−1 � P −5/2 where P is small (see his
equation 2.7e and the first inequality in his Appendix C). Moreover, it was assumed
that the radial length-scale of the convection modes is much smaller than the gap
width. As a result only the boundary condition at the outer wall has been taken into
account.

The goal of this paper is to present an analysis of the multicellular convection in a
simple framework. For this purpose we use the small-gap approximation, but include
the effect of curved conical boundaries which is necessary for the spiralling (figure 1)
as well as the equatorially attached (figure 2) modes. For the description of the latter
we develop an asymptotic theory which establishes that they are all modified inertial
waves, and which is valid for E−1 � P −1 and small P . In a second part of the paper,
we study some relevant nonlinear effects proportional to the square of the convection
amplitude, namely the generation of mean flows or ‘zonal flows’.

An outline of the paper is as follows. In § 2 the mathematical formulation of the
model is given at linear order in the convection amplitudes. In § 3 the results of a
numerical stability analysis are presented. Section 4 is devoted to the description of the
inertial modes with stress-free boundaries. In § 5 the corresponding marginal stability
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Figure 2. Streamlines computed with the Galerkin code for stress-free boundary conditions
and shown with an annular display as in figure 1(b): (a) an equatorially attached neutral mode
at ε = 2, P = 10−4, η = 6 × 105, rm = 0.93; (b) a multicellular equatorially attached critical mode
at ε = 2, P = 0.025, η = 8 × 105, rm = 0.95.

curves for the convection problem are obtained in the limit of very low Prandtl
numbers. The case of no-slip boundaries is studied in § 6. Section 7 is devoted to the
study of the generation of mean flows. A more general discussion, which includes in
particular a consideration of the Ekman friction effects neglected up to § 7, is given
in § 8, before the conclusion.

2. Mathematical model for linear waves
A cylindrical annulus rotating rigidly about its axis of symmetry with the angular

velocity Ω , as shown in figure 1, is considered. The inner cylindrical wall is kept at
temperature Tin, while the temperature of the outer wall is fixed at the higher value
Tout. Using the gap width d as the length scale, d2/ν as the time scale, where ν is
the kinematic viscosity of the fluid, and P (Tout − Tin) as the scale of the temperature,
we write the equations of motion for the velocity field v and the heat equation for
the deviation θ of the temperature from the basic profile of pure conduction in
dimensionless form

∂tv + (v · ∇)v + 2E−1 ẑ × v = −∇p − Rθ x̂ + �v, (2.1a)

∇ · v = 0, (2.1b)

P (∂tθ + v · ∇θ) = −vx + �θ. (2.1c)

In (2.1), the Ekman, Rayleigh and Prandtl numbers are

E = ν/(d2Ω), R = γgd3(Tout − Tin)/(κν), P = ν/κ,

where γ and κ are the coefficient of thermal expansion and the thermal diffusivity of
the fluid, respectively, and g is the average centrifugal acceleration. We have assumed
the small-gap approximation which allows the use of the Cartesian coordinates x, y

and z as shown in figure 1. The boundary conditions are given by

vx = ∂2
x vx = θ = 0 at x = ±1/2, (2.2)

vz = ∓η0(1 + εx)vx at z = ±h/2d, (2.3)
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where the cylindrical walls of average height h are assumed to be stress-free and
η0(1 + εx) denotes the small angle between the conical end surfaces and the equatorial
plane. For ε =0, this angle is constant while a finite curvature of the cones is described
by finite values of ε. The case of no-slip cylindrical walls may also be considered, in
which case condition (2.2) must be replaced by

vx = ∂xvx = θ = 0 at x = ± 1
2
. (2.4)

Since η0 is a small parameter, the solution of (2.1) can be described in first approxi-
mation by its geostrophic part

v = ∇ψ(x, y, t) × ẑ + O(η0), θ = θ(x, y, t) + O(η0). (2.5)

By taking the z-component of the curl of (2.1a), averaging it over the height of the
annulus and using conditions (2.3) we obtain, for linear waves of small amplitude,

−∂t�2ψ + η(1 + εx)(∂yψ) = −�2�2ψ + R∂yθ, (2.6)

where �2 = ∂2
x + ∂2

y is the two-dimensional Laplacian and the Coriolis parameter η is
defined by

η = 4E−1(d/h)η0.

For a more detailed discussion, see, for example, Busse & Or (1986). Neutral wave
solutions of (2.6) and (2.1c), of the form

ψ(x, y, t) = 2Re{Ψ (x) exp[i(αy − ωt)]}, (2.7a)

θ(x, y, t) = 2Re{Θ(x) exp[i(αy − ωt)]}, (2.7b)

must therefore satisfy
[
iω

(
∂2

x − α2
)

+ iαη(1 + εx)
]
Ψ (x) = −

(
∂2

x − α2
)2

Ψ (x) + iαRΘ(x), (2.8a)

−iωPΘ(x) =
(
∂2

x − α2
)
Θ(x) − iαΨ (x), (2.8b)

the boundary conditions being either

Ψ = ∂2
xΨ = Θ = 0 at x = ± 1

2
in the stress-free case, (2.9a)

or

Ψ = ∂xΨ = Θ = 0 at x = ± 1
2

in the no-slip case, (2.9b)

according to (2.2) and (2.4).
In order to assess the validity of the asymptotic theories that will be developed,

and to be able also to address the case of large Prandtl numbers, we use a Galerkin
method to solve numerically the linear problem (2.8), (2.9).

3. Results of the linear Galerkin code: nature of the critical modes
The linear Galerkin code shows that spiralling modes attached to the inner bounda-

ries are preferred at large P and large η. An example of such a spiralling critical mode,
computed with stress-free boundary conditions, is displayed in figure 1(b) through
the isolines of the real streamfunction, (2.7a). For all our streamline patterns, the
streamfunction levels are evenly spaced, thick lines showing the separatrices ψ =0,
full lines the positive levels of ψ , dashed lines the negative levels of ψ . Despite the
fact that the small-gap approximation is questionable, the similarity of the pattern in
figure 1(b) with those obtained by Aubert et al. (2003) in their figure 3 from two-
and three-dimensional computations is remarkable. Note that in figure 1(b) only the
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Figure 3. (a) Modulus of the streamfunction Ψ (x) and (b) streamlines of the multicellular
equatorially attached critical mode of figure 2(b), now with the natural Cartesian display of
our model. The wavelength λ= 2π/αc = 0.374. (c) Streamlines and (d ) streamfunction Ψ0(x) of
the critical inertial mode computed for the same parameters (see § § 4 and 5 and the data at
ηP = 20 000, figure 8).

separatrices cover the whole gap, since the modulus of the streamfunction decreases
rapidly with increasing x. An example of spiralling mode computed with no-slip
boundary conditions is displayed in figure 10(a); the decrease of the streamfunction
with increasing x is made clear with the dotted curve in figure 10(b). Note that the
balances involved in the selection of spiralling modes are subtle, since, even for quite
large P , there remain three important terms in equation (2.8a), namely the Coriolis,
viscous and buoyancy terms. Moreover, the streamfunction Ψ cannot be rescaled to
be real, and the problem to be solved, even in the asymptotic limit of very large
rotation rates, is essentially complex (see e.g. Jones, Soward & Mussa 2000).

For small P , equatorially attached modes are obtained, which present large moduli
of the streamfunction near the outer cylinder. Such modes are displayed in figure 2.
Despite the small-gap approximation and the fact that in a spherical shell the slope of
the end surfaces is quite large in the region near the outer equator, the monocellular
mode in figure 2(a) is still rather close to those obtained from three-dimensional
computations in a spherical shell in figure 12 of Simitev & Busse (2004). The fact that
the separatrices are straight lines in figure 2(a) indicates that the streamfunction Ψ

can be rescaled to be real. For faster rotation rates, i.e. larger values of η, multicellular
equatorially attached modes are preferred, as that shown in figures 2(b) and 3(a, b)
for stress-free boundary conditions; for no-slip boundary conditions, see figure 11(a).
The modulus of the complex streamfunction shows four local maxima in figure 3(a),
hence, we denote this mode as an n= 4 equatorially attached mode. It is worth noting
here also the similarity of the patterns in figures 2(b) and 3(b) with three-dimensional
results for spherical shell convection, namely those of figure 6 of Ardes et al. (1997).

Considering naturally, in the framework of our small-gap approximation, the wave-
number α as a continuous parameter, we have performed a systematic computation
of the critical mode, i.e. the neutral mode with the lowest value of R. This leads, for
stress-free boundary conditions and ε = 2, to the diagram in figure 4. For P � 0.15,
the transition between equatorially attached modes at small η and spiralling modes
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Figure 4. Nature of the critical modes computed with the Galerkin code for stress-free
boundary conditions and ε = 2.

at large η is not sharp, therefore we have not drawn any transition line in this region.
For smaller values of the curvature parameter ε, the diagram looks similar, at least in
the lower left-hand region; however, all transition lines are shifted to larger values of
η. Moreover, for ε � 0.5, at fixed P the transition towards spiralling modes at large
η is smooth, and the extrema of |Ψ (x)| are much less pronounced than in the case
of figure 3(a); the number n of maxima increases and then decreases with increasing
η, in contrast to what happens for ε � 1. For no-slip boundary conditions, similar
diagrams are obtained. The numerical results show that the transition line between
multicellular modes with n and n+ 1 maxima of |Ψ (x)| follow, for small P , a scaling
law of the form

ηn+1
n ∝ 1/P. (3.1)

The purpose of the asymptotic theory to be developed in the following sections is to
explain this scaling law, to identify the multicellular modes as quasi-inertial modes,
and to elucidate the physical mechanisms leading to the diagram of figure 4. For this
we will follow the pioneering works of Yano (1992) and Zhang (1993, 1994).

4. Inertial modes in the stress-free case
Since, for small Prandtl numbers, dissipation and buoyancy are small in comparison

to the inertial terms in (2.8a), a perturbation approach,

Ψ = Ψ0 + Ψ1 + · · · , ω = ω0 + ω1 + · · · , (4.1)

can be used where the inertial mode streamfunction Ψ0(x) satisfies (2.8a) in the
absence of dissipation and buoyancy,

∂2
xΨ0 = −(αηε/ω0)(x − x0)Ψ0 with x0 = αω0/(ηε) − 1/ε. (4.2)

Through the transformation

x − x0 = −(αηε/ω0)
−1/3ξ, (4.3)

the real Airy equation

∂2
ξ Ψ0 = ξΨ0 (4.4)
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Figure 5. Characteristics of the inertial modes for ε = 0.1, and, from top to bottom,
n= 1, 2, 3, 4. (a) Wavenumber as a function of ξ+ − ξ− according to (4.7a). (b) Dispersion
relation (4.7b).

is obtained. Because of the boundary conditions (2.9a), Ψ0(ξ ) must vanish at

ξ± = (αηε/ω0)
1/3(x0 ± 1/2). (4.5)

Ψ0(ξ ) thus assumes the form of a combination of the two Airy functions

Ψ0(ξ ) = Ai(ξ ) − Ai(ξ+)Bi(ξ )/Bi(ξ+), (4.6)

with condition Ψ0(ξ−) = 0 determining discrete values ξn
− of ξ−. Here, n − 1 ∈ �

denotes the number of zeros of Ψ0(ξ ) within the interval ξn
− <ξ <ξ+. Infinite manifolds

of solutions Ψ0(x; ξ+, n) are thus obtained. For each class the wavenumber and the
frequency of the inertial modes can be deduced from (4.5),

α2 = (ξ+ − ξ−)3/ε + (ξ+ + ξ−)(ξ+ − ξ−)2/2, (4.7a)

ω0 = αηε/(ξ+ − ξ−)3. (4.7b)

An example of a solution for n= 4 is shown in figure 3(d ), where the streamfunction
has been normalized. Since the streamfunction Ψ0(x) is real, the separatrices of the
corresponding flow given by

ψ0(x, y, t) = 2Re{Ψ0(x) exp[i(αy − ω0t)]} = 2Ψ0(x) cos(αy − ω0t)

are straight lines aligned with the coordinate axes as displayed in figure 3(c). In
equation (4.7a) the first term on the right-hand side is always positive, whereas the
second term may assume either sign. The form of the first term shows clearly that
larger curvature effects, i.e. larger ε, tend to diminish the wavenumber, i.e. to increase
the wavelength of the inertial modes. It is also worth noting that the streamfunction
and wavenumber of a particular inertial mode do not depend on the Coriolis
parameter η while ω0 is proportional to η. The fact that ω0 is positive for positive ε

indicates a prograde propagation. Illustrative results for α and ω0/η are displayed in
figures 5 and 6 for representative values of ε, ξ+ − ξ− and n. They clearly show that
larger n, i.e. larger ξ+ − ξ−, leads to smaller frequencies.

To each inertial mode there corresponds a temperature modulation Θ0(x) exp[i(αy −
ω0t)] determined by the heat equation (2.8b),

(
∂2

x − α2 + iω0P
)
Θ0(x) = iαΨ0(x). (4.8)
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Figure 6. As figure 5, but for a larger curvature parameter ε =2.

Together with the isothermal boundary conditions, this equation can be solved easily
with a Galerkin method. In contrast to Ψ0, Θ0 has a non-vanishing imaginary part
and does depend on η; in fact, because of (4.7b), Θ0 depends only on the product ηP .

5. Inertial convection in the stress-free case
The solutions obtained in the preceding section form the basis for the description of

convection at low Prandtl number with the perturbation approach (4.1). The equation
for the perturbation Ψ1(x) of Ψ0(x) reads

[
iω0

(
∂2

x − α2
)

+ iαη(1 + εx)
]
Ψ1 = −

(
∂2

x − α2
)2

Ψ0 + iαRΘ0 − iω1

(
∂2

x − α2
)
Ψ0. (5.1)

Multiplication with Ψ0(x) and integration over the interval −1/2 � x � 1/2, as
indicated by the angle brackets, yields the solvability condition

iαR 〈Ψ0Θ0〉 − iω1

〈
Ψ0

(
∂2

x − α2
)
Ψ0

〉
=

〈
Ψ0

(
∂2

x − α2
)2

Ψ0

〉
. (5.2)

Introducing the dissipation, inertia and buoyancy integrals

D =
〈
Ψ0

(
∂2

x − α2
)2

Ψ0

〉
= (αη/ω0)

2〈[(1 + εx)Ψ0]
2〉, (5.3a)

I = −
〈
Ψ0

(
∂2

x − α2
)
Ψ0

〉
= (αη/ω0)

〈
(1 + εx)Ψ 2

0

〉
, (5.3b)

Br = 〈Ψ0Re(Θ0)〉, (5.3c)

Bi = −〈Ψ0Im(Θ0)〉, (5.3d)

we thus obtain

R = D/(αBi), ω1 = −αRBr/I, (5.4)

which shows that the neutral Rayleigh number R is governed by a balance between
dissipation and buoyancy, and the frequency shift ω1 by a balance between buoyancy
and inertia. Since the Prandtl number enters the analysis only through the function
Θ0, i.e. through the product ηP , R and ω1 depend only on the combination ηP . The
numerical results of the Galerkin code summarized in figure 4, which show that, in
the limit P → 0, the neutral Rayleigh numbers of the various competing equatorially
attached modes depend only on ηP , suggest that they approach asymptotically the
inertial modes that we have calculated. This is confirmed by quantitative comparisons,
like those presented in figures 7 and 8. In these figures the Rayleigh numbers
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Figure 7. Results of the perturbation theory for the inertial convection modes in the stress-free
case and for ε =0.1: reduced values of the neutral Rayleigh numbers after minimization vs.
α (thick lines, left-hand axis); corresponding critical wavenumbers (thin line, right-hand axis).
Note the jumps of αc at the points where lines with n and n+ 1 intersect. The circles show for
comparison some reduced numerical values of Rc obtained with the linear Galerkin code for
P = 0.025.
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Figure 8. As figure 7, but for ε = 2. Corresponding critical frequencies
are displayed in figure 9.

minimized as a function of α, divided by

Ra
c = 3(ηP/

√
2)4/3 (5.5)

which is the asymptotic expression obtained in the case ε =0 in the limit of large η

and small P (Busse & Or 1986), have been plotted for different values of n. Figure 8
has been complemented with figure 9, showing the corresponding critical frequencies
ωc = ω0(αc) + ω1(αc) in the perturbation theory; note that ω1 always represents a small
negative correction to ω0. At the test points shown, for P =0.025, the relative errors
on Rc are less than 3.3%, the relative errors on αc less than 2.1%, and the relative
errors on ωc less than 0.9%. Naturally, the agreement between the perturbation theory
and the numerical results becomes better for smaller Prandtl numbers.

For large η, the decrease of the Rayleigh number R = D/(αBi) with increasing n,
visible in figures 7 and 8, stems from the fact that, while D increases with increasing n,
it does so less sharply than Bi . Since D is the power consumed by viscous dissipation
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Figure 9. Critical frequencies ω0(αc) +ω1(αc) corresponding to the sequence of critical modes
of figure 8 for P =0.025. The circles show some numerical values of ωc obtained with the
linear Galerkin code.

and RαBi the power developed by the buoyancy forces, this means that the increased
dissipation in multicellular modes is overcome by a much more efficient release of
buoyancy. This latter effect arises because, according to (4.8), the reduced buoyancy
force

−Θ0 =
(
α2 − ∂2

x − iω0P
)−1

iαΨ0

is larger and more ‘in phase’ with the radial component of the flow iαΨ0 for increasing
n. This, in turn, is due essentially to the strong decrease of the angular frequency ω0

with increasing n, visible in figures 5(b) and 6(b). These effects also exist in the absence
of curvature, ε =0, and are responsible for the property that the critical values of
the Rayleigh number are asymptotically independent of n (Busse 1986). In the case
of finite curvature, ε �= 0, the decrease of ω0 with increasing n is sharper (compare
figures 5b and 6b), and thus the multicellular modes, which, moreover, can adjust
better to the inhomogeneous conditions of the annular gap, are typically preferred.

While these results explain the properties of quasi-inertial convection at small
Prandtl numbers as displayed in figure 4, together with the scaling law (3.1), the onset
of spiralling modes cannot be captured by the perturbation theory, which confirms
that these latter modes are not governed by inertia.

Finally, it is worth mentioning that, just as (5.5) describes the order of magnitude
of Rc, the asymptotic values

αa
c = 2−1/6P 1/3η1/3, ωa

c = 21/6P −1/3η2/3 (5.6)

derived in Busse & Or (1986) for the case ε =0 give the correct order of magnitude
for the values of αc and ωc obtained for small P and large η in the interval 0 � ε � 2.

6. The effect of no-slip boundary conditions
The results obtained in the preceding sections are valid when the velocity field

satisfies stress-free conditions at the cylindrical walls x = ±1/2. Although the inertial
modes do not need to satisfy the condition ∂2

xΨ = 0 at x = ±1/2, they do so by virtue
of Airy’s equation. At rigid walls the condition ∂xΨ = 0 at x = ±1/2 must be satisfied
in addition to the condition Ψ =0 at x = ±1/2. In order to accommodate the no-slip
condition the inertial mode streamfunction Ψ0(x) must be modified by boundary-layer
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contributions Ψ̃ (x) which are governed by the equation

iω0Ψ̃
′(x) = −Ψ̃ ′′′(x). (6.1)

where the prime indicates the derivative. In writing this equation we are anticipating

that Ψ̃ (x) is finite only in small boundary layers of thickness ω
−1/2
0 adjacent to the

walls at x = ±1/2. Since, for small values of P , the inequality α2
c  ω0 is always

satisfied, the tangential component of the velocity field is much larger than the
normal component and the Coriolis force is thus directed mainly normal to the wall
and balanced by the pressure gradient. Equation (6.1) thus represents the dominating
terms of the azimuthal component of the Navier–Stokes equation in the boundary
layers. Solutions of (6.1) can be written in the form

Ψ̃±(x) = p± exp[±(1 − i)
√

ω0/2(x ∓ 1/2)] (6.2)

near x = ±1/2. The condition Ψ ′
0(x) + Ψ̃ ′

±(x) = 0 at x = ±1/2 yields

p± = ∓Ψ ′
0(±1/2)/[(1 − i)

√
ω0/2]. (6.3)

Of course, Ψ0(x) + Ψ̃±(x) no longer vanishes at x = ±1/2 and a further contribution to
the streamfunction is required in order to rectify this situation. Since the amplitudes
p+ and p− are only of the order ω

−1/2
0 , this correction will lead to a negligible change

of the Rayleigh number. The evaluation of the additional term 〈Ψ0(∂
2
x − α2)2Ψ̃ 〉 in the

solvability condition (5.2) yields
〈
Ψ0

(
∂2

x − α2
)2

Ψ̃
〉

= −
[
(∂xΨ0)

(
∂2

x Ψ̃
)]1/2

−1/2
+ h.o.t. = (1 − i)D̃ + h.o.t. (6.4)

with

D̃ =
√

ω0/2{[Ψ ′
0(1/2)]2 + [Ψ ′

0(−1/2)]2}. (6.5)

Instead of (5.4) we now obtain from the solvability condition (5.2) and to leading
order

R = (D + D̃)/(αBi), ω1 = −αRBr/I − D̃/I, (6.6)

which clearly show the effects of the increased dissipation in the boundary layers on
the neutral Rayleigh number and frequency shift of the no-slip convection modes.
Minimizing the Rayleigh number vs. n and α leads to a good estimate of the critical
properties of no-slip convection as compared with the linear Galerkin code. For
instance, for the same test points as those shown in figures 7 and 8, the relative errors
on Rc are less than 3.8%, the relative errors on αc less than 2.3%, and the relative
errors on ωc less than 1.1%.

7. Geometrical study of the mean zonal flow
The most interesting nonlinear effect proportional to the square of the amplitude

of the critical mode is surely the generation of the azimuthal mean flow u(x) by the
nonlinear advection term S(x), as expressed by the azimuthal average of the azimuthal
Navier–Stokes equation (see e.g. Plaut & Busse 2002)

∂2
xu = S = 2αcIm[∂x(Ψ ∂xΨ

∗)]. (7.1a)

Plaut & Busse (2002) showed that the source term S(x) has a geometrical meaning in
terms of the separatrices y(x), the streamlines ψ(x, y, t) = 0,

∂2
xu = S = 2α2

c ∂x(|Ψ |2y ′) = 2α2
c [|Ψ |2y ′′ + 2Re(Ψ ∗Ψ ′)y ′], (7.1b)
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Figure 10. Spiralling critical mode computed with the Galerkin code for no-slip boundary
conditions, ε = 2, P =7, η = 206 000, with its associated mean zonal flow. (a) Streamlines;
the thick lines show the separatrices y(x). The wavelength λ= 0.278. (b) —, slope y ′(x) of
the separatrices; · · · , square of the modulus of the streamfunction |Ψ (x)|2; - - - , product
|Ψ (x)|2y ′(x). (c) Source term S(x) from (7.1). (d ) Corresponding mean flow obtained by
a numerical solution of (7.1) with the boundary conditions (7.2). Note that, when Ekman
friction effects are taken into account (see § 8), the mean-flow is no longer given by (d ), but
instead by −τES, i.e. its form is given by (c).
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Figure 11. As figure 10, but for a multicellular equatorially attached critical mode computed
for no-slip boundary conditions, ε = 2, P = 0.025, η = 800 000. (a) Streamlines. The wavelength
λ=0.322. (b) —, y ′(x); · · · , 5|Ψ (x)|2; - - - , 10|Ψ (x)|2y ′(x). (c) Source term S(x). (d ) Corres-
ponding mean flow.

where, in fact, −2α2
c |Ψ |2y ′ is the relevant Reynolds stress, the azimuthal average of

−vxvy . However, the consequences of the general relation (7.1b) in the presence of cur-
vature effects were not studied. This gap is filled by figures 10 and 11 for a spiralling
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and an equatorially attached mode. In both cases we focus on no-slip boundary
conditions,

u = 0 at x = ± 1
2
, (7.2)

and a Galerkin code has been used to compute the critical modes and to integrate
(7.1), (7.2). For the spiralling mode (figure 10), the source term is non-vanishing only
near the inner cylinder because of its proportionality to Ψ (x), and in fact the form
of the function S(x) is mainly controlled by the factor |Ψ (x)|2, since, in the inner
region, y ′(x) is approximately constant. Indeed, using the approximation y ′(x) � y ′

0

in the inner region, we obtain S(x) � 2α2
c y

′
0∂x(|Ψ |2) from (7.1b), which does explain

the shape of the source term shown in figure 10(c). For the equatorially attached
mode, on the contrary, the source term is stronger in the boundary layer of the outer
cylinder (figure 11c). The function S(x) also presents several oscillations because of
the complex structure of the functions |Ψ (x)|2 and y ′(x) displayed in figure 11(b).
However, the double integration over the x-coordinate yields in both cases a mean
flow u(x) of a rather smooth and simple form, shown in figures 10(d ) and 11(d ).

8. The influence of Ekman friction
The above results must be revisited if we take into account the effects of the

Ekman friction at the conical caps, which we have neglected up to now. This is, in
general, justified for the calculation of neutral modes, for which the dissipation due to
viscous stress associated with azimuthal velocity gradients, i.e. the terms proportional
to α2 and α4 in the right-hand side of (2.8a), of order E−4/3 typically, dominate the
Ekman friction effect of order E−1/2. On the other hand, as pointed out by Soward
(1977) and Aubert et al. (2003), Ekman friction effects on the mean flow are typically
non-negligible, since the mean flow does not create viscous stress associated with
azimuthal velocity gradients. In order to calculate the quadratic mean flow, we should
therefore not solve (7.1) but instead (Greenspan 1968)

∂2
xu − u/τE = S, (8.1)

where the ‘Ekman friction time’

τE = (h/d)E1/2. (8.2)

For the geometrical parameters of the outer core of the Earth, h � d, η0 � 1, E � 2/η,
the Ekman friction term roughly dominates the viscous term ∂2

xu in (8.1).
Consequently, we are led to the rough approximation

u � −τES = −2τEα2
c ∂x(|Ψ |2y ′), (8.3)

which dramatically changes the simple pictures of figures 10(d ) and 11(d ). Application
of (8.3) to the spiralling mode of figure 10 yields a zonal flow very similar to that
obtained with the model of Aubert et al. (2003) in their figure 7(a). This indicates
that the geometrical analysis developed here is also relevant for their model, despite
the fact that they have a large gap. In the case of the multicellular mode of figure 11,
a ‘multijet’ zonal flow is obtained, with a strong jet near the outer cylinder.

9. Discussion
One would like to study, in the model including Ekman friction, higher nonlinear

effects such as the saturation of the critical wave, its stability versus long-wavelength
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perturbations, and other secondary instabilities. Indeed, especially at small P , mean-
flow effects are known to play an important role at this stage (see e.g. Or & Busse
1987; Abdulrahman et al. 2000; Plaut & Busse 2002). However, a numerical solution
of the full equation (8.1) and a heavy computational effort will be required since, even
for the case of an equatorially attached critical mode, the problem depends on the
parameters η and P separately now instead of on their combination ηP only.

Another prospect opened by the present work concerns the systematic study of
multicell modes in spherical shell convection and at small Prandtl numbers, which has
not yet been done. A perturbation theory based on the inertial wave representation
developed by Zhang et al. (2001) for a rotating fluid sphere will be an interesting
challenge for future research.

We acknowledge support from the Conseil Régional de Lorraine with a grant
Accueil de Chercheurs Étrangers.

Appendix. The limit of vanishing curvature
Let us show that, in the stress-free case, the limit ε → 0 is regular, i.e. we obtain from

the general expressions (4.7) and (5.4) the analytical expressions for ε = 0 derived in
Busse & Or (1986). In the limit ε → 0, the relevant inertial modes fulfil ξ0 = |ξ+ + ξ−|/
2 � 1 and Ai(ξ+) = Ai(ξ−) = 0 to good approximation. Hence, according to the asymp-
totic representation of the Airy function (Abramowitz & Stegun 1972), |ξ−|3/2 −
|ξ+|3/2 = 3nπ/2 holds. We thus find ξ+ − ξ− = nπ/ξ

1/2
0 . As a consequence, (4.7) can be

written in the form

α2 = αη/ω0 − n2π2, ω0 = αηεξ
3/2
0 /(nπ)3, (A 1)

from which the dispersion relation ω0 =αη/(α2 + n2π2) for thermal Rossby waves in
the limit P = 0 (Busse & Or 1986) follows. We may also conclude from (A 1) that ξ0

tends to infinity as ε approaches zero in such a way that εξ
3/2
0 stays constant. Since,

in the limit ε → 0, we have 〈[(1 + εx)Ψ0]
2〉 = 〈Ψ 2

0 〉, and moreover, according to (4.8),

〈Θ0Ψ0〉 − α/(ω0P )
〈
Ψ 2

0

〉
= i/(ω0P )

〈
Ψ0

(
∂2

x − α2
)
Θ0

〉

= i/(ω0P )
〈
Θ0

(
∂2

x − α2
)
Ψ0

〉
= −iαη

/(
ω2

0P
2
)
〈Θ0Ψ0〉,

the expressions (5.4) for R and ω1 can easily be evaluated to lowest order in ε,

R = (αη/ω0)
2
[
ω3

0P
2/(α3η) + η/(ω0α)

]
= η2P 2/(α2 + n2π2) + (α2 + n2π2)3/α2,

ω1 = −ω0P.

These represent the correct expressions for the Rayleigh number and for the first-order
correction of the frequency ω at small Prandtl numbers P in the case ε = 0.
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